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The fluid density distribution within microscopic pores is determined by solving integral equations relating
the local chemical potential to the van der Waals attractions and hard sphere repulsions of surrounding material.

● To avoid resolving the density distribution on sub-molecular scales, the governing equations are averaged over
zones of molecular size using analytic functions to represent local density variations within each zone. These
local density profiles range from singularities to uniform distributions depending on the local variation of the

. potential field. Sample calculations indicate that this integral approach yields results in very good agreement
with those based on traditional density functional theory (DFT), while reducing computing times by factors of
103 to 104 for one-dimensional geometries.

Introduction
Intermolecular forces attract gas molecules to

solid surfaces. Because this attraction to solids is
much stronger that the mutual attraction between
gas molecules, gases tend to form a thin high-density
layer adjacent to any solid surface. Such layers may
reach liquid-like densities even at pressures orders-
of-magnitude below that at which bulk condensation
would normally occur. The thickness of these liquid-
like adsorbed layers grows with increasing pressure,
but rarely exceeds a few molecular diameters until
the normal condensation pressure is reached [1,2].

The adsorption of gases on solid surfaces is im-
portant in several practical applications of porous ma-
terials. Silica desiccants and charcoal filters, as well as
more sophisticated devices used in the filtration and
separation of gases [I], all depend on large specific

. surface areas to attract and store large quantities of
gases in a relatively small physical volume. In some
applications, the performance of these materials can

J be enhanced by reducing pore sizes to near-molecular
dimensions. In such small pores, gases are attracted
by the overlapping potential fields of opposing pore

walls. The increased attraction promotes adsorption
and reduces the pressure at which gas in the center
of the pore condenses to form a liquid. This marked
reduction in condensation pressure permits the low
pressure storage of gases at mean densities near liq-
uid values.

Another common application of this adsorption
phenomenon is in characterizing the microstructure
of porous materials. Here, a measured adsorption
isotherm, depicting the amount of gas adsorbed as
a function of the external pressure [2], is used to de-
duce the surface area and sometimes the pore size dis-
tribution. For materials having relatively large pores,
the measured isotherm of a material sample is com-
pared with a theoretical isotherm for a flat surface
to obtain an estimate of the surface area. For ma-
terials having molecular-scale pores, both the surface
area and pore size distribution must be estimated to-
gether. In this case, a candidate pore size distribution
is varied to obtain the best agreement between the
measured isotherm and a composite isotherm that in-
cludes contributions from all candidate pores sizes,
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weighted by their respective surface areas [3,4,5,6].
This method requires theoretical predictions of the
complete isotherm, including condensation, for each
pore size in all candidate distributions.

Theoretical predictions of adsorption and con-
densation are traditionally based on analytical mod-
els. The most familiar of these are the Langmuir
equation for the pressure-dependent fractional surface
coverage of the first adsorbed layer and the BET for-
mula describing the sequential formation of multiple
adsorbed layers [7]. Quite distinct from these analyses
of adsorption on flat external surfaces, there are two
well-known formulas relating condensation pressure to
pore size. The classical Kelvin equation applies in
the limit of very large pores, whereas the Horvath-
Kawazoe model applies in the opposite extreme [8],
Although these analytical models provide many useful
insights, a more general approach is needed to predict
both adsorption and condensation in all pore sizes,

Numerical models of adsorption and condensa-
tion may be separated into three general categories.
All three use pair potentials to describe interactions
between molecules. In molecular dynamic (MD)
simulations the calculated forces between discrete
molecules are used to evolve their individual time-
dependent trajectories [9]. Monte Carlo (MC) meth-
ods replace the lengthy process of time integration
with trial-and-error minimization of the free energy
followed by ensemble averaging [10]. In contra& to
these discrete simulation methods, the mean field ap-
proach referred to as density functional theory (DFT)
uses a continuum methodology to determine directly
the time-averaged density field [9-15]. In this tech-
nique, interactions among molecules are represented
by density-weighted integrals of the pair potential
functions. Although DFT accurately reproduces the
results of MD and MC simulations with greatly re-
duced effort [9-15], computing times for DFT are still
measured in hours or even days.

All of these numerical models yield structured
density profiles like that shown in Figure 1. The den-
sity peaks adjacent to the pore walls reach magnitudes
about ten times greater than the bulk liquid density.
This is because the molecules in these layers have their
centers confined within a very narrow zone coincident
with the minimum of the attractive wall potential.
Thus the large magnitude and slenderness of the first
few peaks reflect the high areal density and planar or-
dering of the surface atoms of the adjacent solid [16].

With increasing distance from the wall, the fluid be-
comes less ordered and the peak rapidly diminish.

Although the occurrence and magnitude of these
density peaks are of some theoretical interest, numer-
ical resolution of these features requires a substantial

Figure 1. Schematic of adsorption on the walls of a
slit pore. Density peaks of the first layers result from
localization of molecular centers in the potential well
of adjacent solid material. Successive layers are pro-
gressively less ordered and have less prominent peaks.
Layer spacing is about one molecular diameter.

computing effort. This effort can be greatly reduced
if the primary purpose of the analysis is to predict the
total mass of adsorbed gas. This total adsorption is
the only information required for the analysis of the
engineering applications noted earlier, including the
construction of adsorption isotherms used to infer the
pore size distribution of a material.

With this purpose in mind, the present paper
describes a locally analytic density functional theory
(LADFT) derived by averaging the governing equa-
tions over regions of molecular size. In contrast to
previous formulations, we make no attempt to resolve
sub-molecular details of the density profile by numer-
ical means. Rather, local densities within each com-
putational zone are approximated by analytical pro-
files. As we will see, this approximation yields results
nearly identical to those obtained using traditional
DFT methods, but with a very dramatic reduction in
required computing times.

Governing Equations
The fluid density distribution in a region of uni- -

form temperature, T, and chemical potential, Vm,
may be determined by minimizing the grand potential
energy functional, O [9-15].

Q[p(r)]= ] (f [P(r)]+ p(r) [v(r) – Mm])~r O)
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Here, V is the external potential induced by surround-
ing solid material, and j is the Helmholtz free energy

,, per unit volume of the fluid. The free energy is com-
posed of an ideal gas component, a mean field attrac-
tion, U, and an excess hard sphere repulsion, A+.

#

~ = p(r) ~~(ln [A3p(r)] -1)+ ~u(r) +Ati(r)] (2)

The logarithmic ideal gas component depends on the
temperature and the local density, p, measured in
molecular masses per unit volume, as well as Boltz-
man’s constant, k, and the de Broglie wave length,
A.

The fluid attraction, U, is defined by a density
weighted integral of the pair potential function, u,
over the surrounding region.

J

U(r) = p(r’)u(lr – r’l)dr’ (3)

Although the Lennard-Jones 6-12 potential is uti-a
lized in nearly all numerical studies, authors differ
in how they extract the attractive part. We follow
one common approach by splitting the potential at

* its crossover point, T = o, and cutting it off beyond
T = Tmax .

Outside this interval, u = O. To avoid a slight dis-
continuity at T = Tmax, this truncated function is then
shifted by subtracting u(r~aX). This approach pro-
vides better agreement with measured isotherms [6]
than the alternative procedure of splitting the po-
tential at its minimum [5]. The molecular diameter,
a, and depth of the potential well, ~ff, appearing in
equation (4) are known approximately for common
gases.

The excess fluid repulsion, A@, is generally de-
rived from an equation of state. Tarazona’s formula-
tion [12] based on the Carnahan-Starling equation is
widely used because it is simple and agrees well with
MC simulations [6,9-15].

The normalized density, q, represents the volume frac-
tion occupied by molecules having a hard sphere di-

* ameter, d, taken here as the Lennard-Jones diame-
ter, a. In the local density approximation (LDA), the
normalized density is based on the local density, that

is ~(r) = p(r), while a smoothed density approxima-
tion (SDA) uses a weighted average of the surrounding
density field. In the latter case,

I

~(r) = P(r’)u((r– r’l)dr’ (6)

Linear weighting over a sphere of radius u seems
to provide the best overall agreement with mea-
sured isotherms and with the results of MC simula-
tions [6,15].

u(r) = :3 (1 – ;) (7)

The use of a mean rather than local density permits
the formation of narrow density peaks, consistent with
physical expectations and the results of MC simula-
tions.

The fluid-solid interaction potential, V, is ob-
tained by integrating the complete Lennard-Jones
pair potential over the solid walls that bound the
fluid. The solid density is usually assumed uniform
over planar sheets of atoms spaced A apart, as in
Steel’s widely used formula [17].

Here, z is the distance from the center plane of the
surface layer of the solid atoms, u~f is the effective
fluid-solid intermolecular diameter, and CWcontains
both the Lennard-Jones well depth, e~f, and the solid
density, p..

In a narrow slit
potential is then

bounded by two walls the external

V(x)= v(z+y)+v(w–x+;) (10)

where the position, x, and the pore width, w, are both
measured from the surface of the first layer of atoms
in the solid. This is as shown in Figure 1.

Using the definitions above, the grand potential
energy functional, fl, can now be minimized by tak-
ing the variation of equation (1) with respect to p(r)
and equating the result to zero. The resulting Euler-
Lagrange equation may be written as

kTln(A3p) + U+ A@(~) + ~’+ V = Km (11)

where

[
~’(r) = p(r’)w(]r – r’[) A@ ’(~(r’))dr’ (12)

.
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and

A~’(~) = $. [Aq!@)] = kT:q 3 : :2;;3 (13)

Equation (11 ) must be satisfied everywhere within the
fluid, including the region far from the solid where
V = O and p = ~ = pm. Evaluation of equation (11)
for this special case provides an expression for the
ambient chemical potential,

Km= kTln(A3p~) +AV(P~)

+pco(A#J’ + effCu) (14)

in which Cu sz –1203 is the integral of u, given by
equation (4), over an infinite domain. Similarly, the
pressure of the ambient gas follows directly from ther-
modynamic identities and the Maxwell relations ap-
plied to the Helmholtz free energy per unit mass,
a= f/p.

‘=” (:)T=’kT(’+%)+i’2’ffcLJ ‘“)
Thus for a given p and T, one can sequentially find
pm and ~m from equations (1.5) and (14). The desired
density distribution p(r) is then obtained by solving
equation (II ), usually by numerical means.

Conventional Numerical Approach
Numerical solutions to equation (11) have been

previously obtained using fine grids having spacing
much smaller than the molecular diameter. This level
of resolution is generally required to justify the as-
sumption of uniform density within each grid zone.
Under these circumstances the integral quantities U,

Aq5, and ~‘ in equation (11) can be replaced by
summations over the grid using the distance between
zone centers to evaluate the weight functions, w and u.
This discretization process yields a system of nonlin-
ear algebraic equations that can be solved by iterative
methods.

The prototypic adsorption problem is that of de-
termining the density profile adjacent to a planar wall
or within a planar slit or cylindrical pore. These ge-
ometries may be treated in a one-dimensional fashion
since the density is expected to be relatively uniform
in directions parallel to the pore walls.

The calculated variation of the normalized nitro-
gen density, p* = pCT3,with scaled distance, x* = x/cr,
from a graphite wall is illustrated in Figure 2 for a
pressure slightly less than the bulk condensation pres-
sure, p.. Two solutions are shown. Although nearly

5.0

0.0.
0 1 23 4 5 678

Normalized Position - x*

Figure 2. Density profiles adjacent to a solid sur-
face. Gas-1ike and liquid-like solutions are indicated
by solid lines. Corresponding smoothed densities,
shown dotted, are used to calculate repulsions.

identical near the adsorbent surface, they approach
different asymptotes in the far field. In this region,
one exhibits the density of a liquid, the other that of
a gas Since each solution represents a local minimum

of Q, we must select that one having the smaller free
enerag. For adsorption on a planar surface this is the
gas-like solution at all pressures less than p..

The oscillatory character of the local density pro-
file is clearly apparent in the solid curves of Figure 2.
The prominent peak adjscent to the pore wall is coin-
cident with the minimum point of the wall potential,
V. As such, it situated a distance roughly o~f from the
center plane of the nearest atoms of the solid. Succes-
sive density peaks are separated by about one molec-
ular diameter. This spacing maximizes the Lennard-
Jones attraction while minimizing the hard sphere re-
pulsion of adjacent peaks. With increasing dist ante
from the wall, the width of the peaks increases and
their amplitude decreases, Beyond a few molecular
diameters, the density becomes nearly uniform over
zones of molecular width.

The smoothed density, ~, defined by equation (6)
is also displayed in Figure 2 by the dashed curves. De-
spite extreme variations in the local density, ~ varies
smoothly between a maximum value of about unity
near the pore wall to the ambient gas or liquid density
in the far field. Moreover, the mean density cannot

.,’”
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greatly exceed unity anywhere since the correspond-
ing repulsions calculated from equation (5) would then
be excessive. Forthese two reasons, a mean density
like ~ is an attractive computational variable.

Conventional DFT solutions like those in Fig-
4 ure 2 entail substantial expenditures of computer

time. Each density peak requires at least ten grid
points to achieve an acceptable degree of definition.
Fhrther, since a minimal coverage of a few points per
molecular diameter is always needed, if only to re-
solve the weighting functions themselves, there are
typically 10 to 20 zones within one molecular diameter
of any given point. All of these zones are close enough
to contribute to the highly nonlinear repulsions. Be-
cause of this long-range nonlinear coupling, Tarazona
recommended using weights of only 1/50 to update
the unknown densities in his original iterative solu-
tion scheme [12]; larger weights generally lead to di-
vergence. In an effort to decrease computing time we
have employed adaptive gridding algorithms, banded
relaxation schemes, and adaptive adjustment of iter-

.8 ative weights.
Despite all such efforts, more than 104 iterations

are usually needed to converge a numerical solution
9 like the one shown in Figure 2. The correspond-

ing CPU time is several minutes on an SGI R8000
computer. Furthermore, generation of an adsorption
isotherm typically requires 200 to 300 such solutions
for a sequence of relative pressures p/po ranging from
10–8 to unity. Finally, we must generally compute
50 to 100 such isotherms for different pore sizes if
our goal is to determine pore size distributions from
measured isotherms. Thus, a total of 10 to 30 thou-
sand solutions are needed, each requiring 100 to 300
iterations when the most recent solution is used for
initialization. Of course it is possible to store all of
the results for future use, but they will only be appli-
cable for a particular combination of pore geometry,
adsorbent solid, adsorbate gas, and specimen temper-
ature. Two-dimensional calculations addressing hys-
teresis in constricted and open-ended pores [18,19]
require hours of computing to produce even one solu-
tion [19].

Locally Analytic Formulation
The objective of LADFT is to use our knowl-

. edge of the solution structure to reduce the computa-
tional effort. It is understood a priori that the first
layer of adsorbed molecules will always be centered

d at the minimum of the external potential function
V. It is also known that the separation between fluid
molecules, and hence adsorbed layers, is very nearly
the same as the shell diameter, d x a, used in defining

the hard sphere repulsion.
Thus, we begin by dividing the problem domain

into calculational zones centered one molecular diam-
eter apart. In one-dimensional problems, like those
considered here, each of the slab-like zones represents
a layer of adsorbed molecules. The zones nearest to
the pore walls are first centered at the local minimum
of the wall potential. From these locations, centers
of subsequent zones are placed at integer multiples
of the fluid molecular diameter. Any required non-
uniformity of zone spacing due to non-integer pore
widths is accommodated in a zone or pair of zones
furthest from the pore walls.

Since essential features of LADFT are conveyed
most easily through one-dimensional examples, the
equations in the main text will hereafter be written
using one-dimensional notation. These equations and
solution procedures are generalized to their multidi-
mensional form in Appendix A. However, nearly all
of the ensuing discussion is applicable to both single
and multidimensional problems.

Recognizing that fluid/solid interactions usually
produce localized density peaks like those in Figure 2,
we choose to represent the density profile within each
zone by a function of the form

p(r) = pze-a’lz-z’in (16)

in which pi is the maximum density in the zone cen-
tered at xi. The parameter ai is the density profile
coefficient that determines the shape of the profile in
each zone. These shapes range from a singular spike
for a large value of ai to a uniform distribution when
~i is small. The exponent n may be taken as either
unity, as done in the examples presented here, or two
to obtain exponential or Gaussian peaks. This choice
has negligible influence on the calculated mean den-
sity within zones, but affects instead only the less im-
portant magnitude of the peaks.

Because our primary aim is to calculate the total
amount of adsorbed gas, we chose as our principal
unknowns the average densities pi within molecular-
sized zones of volume vi.

(17)

The integrals defining ~ and U in equations (3) and
(6) may then be written as summations over ~j.
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with the weights ~ij and uij evaluated by integration
over the jth zone

J

W~j(Xi) = ~ e‘~jlm–z~l’’~(lri _ rl)dr
Pj V3

(19)

where ri refers to any tied point on the center plane of
the ith zone. The expression for Utj(xi) is the same as
equation (19) for Wzj(q) except that u is everywhere
replaced by u.

The free enero~ functional may now be expressed
in terms of volume integrals over the individual cells.

fl. ~ /[ p(r) a(r) + V(r) – pm)dr (20)
i ‘;

This summation can be well approximated as

f2=~~2[d~+T2-P~]TJ2 (21)

where i

tii = kT[ln(A3~i) ––I] + ~ ~i + A~(~i) (22)

The overbars appearing here indicate density
weighted averages over the ith cell, ~ illustrated by
the following definitions of ~ and ~.

— 1
Fi=:

I

1
p~tdr and ~i = —

Pivi Ui !Qtvi V%
p ~ dr (23)

For computational purposes, these quantities may be
rewritten in terms of the primary unknowns which are
the mean densities in surrounding cells,

-- X@~~~5– and ~i = ~ iiij~j (24)
~ ~

Here again, the overbars on the weights, Uij and iiaj,
indicate that they have been averaged over the ~th

zone using the local density as a weight function.

J

tiij(~l) = ~ e–ailz-zilntiij(~) dr
Piva V,

(25)

AS before, the analogous expression for iiij (xi) is ob-
tained from equation (25) by replacing ~ij (~i) with
utj (xi). We note that the quantities ~i/~i appearing
above, and hence all of the related weights, depend
only on the grid geometry, on the pre-selected value
of the exponent n, here taken as unity, and the profile
coefficients ~i, as explained further in Appendix B.

The averaging process used in deriving equa-
tions (21) and (22) from equation (20) is mathemati-
cally exact for the linear terms involving Di and Am.

The nonlinear A+ term remains exact for a zone con-
taining a singular spike (a ~ cm) or in a region of
uniform density (a + O), but is otherwise approx- -
imate. The Iogarith.mic term can be treated exactly
for a locally exponential density profile like those used
here, but the simpler approximation stated in equa- ‘.

tions (21) and (22) is adequate provided we adopt the
following definition of the mean external potential.

“=wie-v(r)drl(26)

This ensures that the volume averaged equations will
be exact in the low pressure limit where the logarith-
mic ideal gas term is in balance with the external at-
traction, F.

A minimum of !d now requires that its derivatives
with respect to all pi are identically zero, yielding a
set of coupled algebraic equations of the form

These are solved in sequence working outward from
the pore walls. On each cycle, an improved estimate
of each pt is found by adjusting its value to satisfy
the ith equation while holding the other ~j fixed. To
perform this task we use a nonlinear equation solver
called FZERO; comparable routines are available in
most mathematical software libraries.

Most LADFT solutions converge within 5 to 20
iterations rather than the hundreds, or even thou-
sands, of iterations required in the conventional ap-
proach. This rapid convergence is a direct benefit of
averaging the equations over zones of molecular scale.
When this is done, the mean density ~i used in cal-
culating the nonlinear repulsion terms is nearly the
same as ~%, the primary unknown in the ‘ith equa-
tion. The resulting increase in diagonal dominance of
the discretized equations eliminates any need for cau-
tious weighting of the new ~z and greatly increases
the convergence rate. This, together with a ten-fold
reduction in the number of unknowns, reduces the re-
quired computing time by more than three orders of
magnitude

Density Profile Coefficients
The first steps in computing the mean density

field using equations (27) and (28) are to determine
appropriate values for the density profile coefficients,

8



ai, and based on these values to calculate the corre-
sponding weight coefficients, iiij and Qij. AS we will
demonstrate, the weight coefficients (and therefore.
the total adsorbed gas) are relatively insensitive to
the profile coefficients over a broad range of judicious

“w approximations; because of this, we are afforded some
measure of flexibility in our approach to determining
these values. After briefly explaining the most rig-
orous approach, we then show that remarkably good
results can be obtained using a set of fixed values for
the profile coefficients. Appendix C describes a third,
even simpler alternative that requires the least pro-
gramming effort and yet yields results nearly as accu-
rate as those presented here.

The most rigorous approach to determining the
profile coefficients is to compute them directly from
their definitions as a part of solving for the mean den-
sity field. In this case, the values of ai are determined
from an estimate of the mean density field using a dis-
crete form of equation (16),

. 1 [1p(Xi)

“++ = (]Zi - Z2*+l)n ln p(Zi*+)
(29)

where the subscripts i + ~ refer to the edges of the
*

ith zone. Similarly rewriting equation (27) in a dis-
crete form, the logarithm of the density ratio can be
replaced by the difference in potential between the
same two points.

[1
~*;

In /2(Xi) U+ V+ A@(~) + Am’— .
P(xi-++) kT

(30)
i

Evaluating the potentials at i and i + ~ is straight for-
ward but does entail weighted summations like those
defined in equation (18). Although the values of ai
obtained from the right and left sides are not necessar-
ily the same, the average of these two provides a good
estimate for the mean value in a given zone. There is
little need for greater precision since the weight func-
tions vary weakly with the profile coefficients.

Combining equations (29) and (30) gives an ex-
plicit expression for the local profile coefficients in
terms of the mean cell densities. Using this expres-
sion, new values of the profile and weight coefficients
can be periodically computed from the current values
of mean densities until convergence of both ai and pi
is obtained.

From experience solving a broad range of sample
problems, we have found that iterative adjustment of
the profile coefficients is generally not required. In-<
stead, a single set of these o’s, may be held con-
stant throughout all calculations. These physically-
motivated values provide excellent results over all pore

I

W~j(CO)

L2ij(CO)

Wij (0)
Gij (0)

u;j (co)
iqj(oa)
u;j (o)
fi:j(o)

o 1 2 3

1 0 0 0
1 0 0 0

0.82 0.09 0 0
0.70 0.15 0 0

-3.77 -3.77 -0.39 -0.08
-3.77 -3.77 -0.39 -0.08
-3.77 -3.09 -0.49 -0.09
-3.77 -2.94 -0.63 -0.09

Table 1. Weight coefficients used to calculate at-
tractions and repulsions between fluid masses in zones
centered Ii – j I diameters apart. Self repulsions in the
second column are much stronger than repulsions be-
tween neighboring zones. U~j = uij /C3.

sizes and ambient pressures. In using these fixed pro-
file coefficients, the corresponding weight coefficients
need only be computed one time for a given geome-
try. Before presenting the preferred set of a’s, it is
instructive to first explore the consequences of alter-
native, even simpler, choices.

To illustrate the influence of the two simplest
choices in assigning profile coefficients, we have com-
puted the attractive weights coefficients, wij (~i), and
repulsive weight u~j (~i) = u2j/u3 coefficients for the
limiting cases of ai = a = cm and ai = a = O. These
limiting values correspond to density profiles that are
either all singular spikes or all uniform distributions,
respectively. The results are presented in Table 1 for
the exponent n =1. Integer values of Ii – j[ across the
top of the table indicate the distance between cell cen-
ters measured in molecular diameters. When Q = W,
Wiz= 1 and all other Wij are zero. In this limit of sin-
gular spikes in all zones, repulsive forces are localized
within each zone, isolating the most severe nonlinear-
ity of the equations. Even in zones of uniform den-
sity (a= O), 70 to 80 percent of the repulsion resides
locally in ~ii. Thk is in contrast to finely zoned cal-
culations where nearly all of the repulsion arises from
neighboring zones. The attractive weights shown in
the lower part of the table are even less sensitive to
the density profiles and so have still less impact on
numerical stability and convergence.

To now illustrate the influence of these assumed
density profiles on the mean density field and to-
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tal adsorbed fluid, we have computed the adsorption
isotherm for nitrogen on a flat graphite surface at a
temperature of 77K for three widely varying choices
of the profile coefficients. In the first case, all profile
coefficients are taken as ~i = a = co. In the second
case, the coefficients are taken as ~i = a = O. Again,
these limiting values correspond to density spikes and
uniform density distributions, respectively. In the
third case, the assumed values of the profile coeffi-
cients are varied such that CY1= co, az = 4/0, and
~i = Ofor all i ~ 3. These values correspond to a den-
sity spike in the first zone adjacent to the surface, a
roughly triangular profile in the second zone, and uni-
form density profiles in all zones further removed from
the surface. The values of all other parameters used
in these calculations are given later with the sample
calculations for adsorption in pores.

The results of these comparative calculations of
adsorption on a flat surface are shown in Figure 3.
The ordinate in this figure, 6*, is the amount of mass
adsorbed per unit of wall area divided by the product
of the molecular diameter, o, and the bulk density of
an unconfined saturated liquid, pt (po) N 0.8/03.

This quantity may be loosely interpreted as the num-
ber of adsorbed layers. The abscissa in Figure 3 is
the relative pressure, p* = p/p., which is the absolute
pressure normalized by the bulk saturation pressure
for a temperature of 77 K.

The three solid curves in Figure 3 represent re-
sults for the three differing assumptions for the spec-
ified profile coefficients, indicated in the figure as all
spikes, all uniform, and variable CY.The isotherm de-
picted by a dashed curve and open circles was calcu-
lated using the smoothed density (SDA) formulation
of DFT with a zone size of 0/20. For purposes of com-
parison, this latter result may be viewed as “exact”.

Differences between the three LADFT solutions
in Figure 3 result mainly from differences in the hard
sphere repulsion. When the density is assumed uni-
form within each zone, the first layer of molecules
has too little self repulsion, permitting PI to reach
excessive densities at low pressures. This behavior
could have been anticipated from the entries in Ta-
ble 1, since a narrowly peaked first layer should have
a self repulsive weight of tiii (co) = 1.0 rather than
~ii (0) = 0.70. However, as the pressure increases and
more layers form, this approximation becomes more
appropriate and the uniform density profiles give very
good results. In the opposite extreme, in which the

2.5
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I LADFT —
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+ alluniform
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Relative Pressure - p*

Figure 3. Calculated adsorption isotherm for a flat
surface. LADFT solution with variable a (.) is nearly
identical to the “exact” result (0) obtained by finely-
zoned DFT with SDA repulsions.

density profiles are ~sumed to be spikes in all zones,
the first layer fills correctly but the second forms too
early because of too little repulsion and too much at-
traction between the first and second layers.

The LADFT solution in Figure 3 with variable a
is clearly in excellent agreement with the fine-zoned
DFT result. This composite of spike and uniform den-
sity profiles, with one transition zone between these
extremes, permits proper formation of the first as
well as all subsequent adsorbed layers. The results
computed using this variable-a approximation with
fixed profile coefficients are also nearly indistinguish-
able from those obtained using the most rigorous ap-
proach in which the profile coefficients are iteratively
determined as a part of the solution.

Because the preassigned coefficients (al = co,
~z = 4/0, and ~i = O for i > 2) yield results quite
comparable to the more rigorous iterative approach
with much less programming and computational ef-
fort, these fixed a’s will be used for all subsequent
calculations.

One additional isotherm, not yet mentioned, has
been included in Figure 3 to underscore the distinction
between the present LA-DFT methodology and the lo-
cal density approximation (LDA) sometimes used in
conventional DFT. The LDA isotherm depicted by a
dashed curve and open squares in Figure 3 was cal-

.
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culated using conventional DFT numerical methods
with a zone size of Is/20 assuming local equality of ~

, and p. In using p as a surrogate for ~, the repulsion
of a narrow peak is calculated as though it were sur-
rounded, to a range of one diameter, by fluid having
that same large density. The resulting excess repul-

*
sion suppresses the first and subsequent layers. In
LADFT, by contrast, the repulsion of the first layer is
much smaller because ~1 is equated to the mean den-
sity PI (since til, 1 = 1), which is several times smaller
than the peak. As in all smoothed density approxima-
tions (SDA), the local repulsion in LADFT depends
on the amount of mass within a range of one molecular
diameter, rather than the local density. From these
observations, it is clear that LDA-DFT and LA13FT
are not equivalent formulations of the problem.

5.0

0.0

‘----- DFT
— LADFT
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Reconstructing Density Profiles
Although a reconstruction the

density profiles is not required in
locally-analytic
computing the

. amount of adsorbed fluid, such reconstruction pro-
vides insight into the nature of the solution and it
serves as a valuable check on assigned values of the
profile coefficients.

w
When the rigorous approach is used to iteratively

adjust the density profile coefficients, their final val-
ues are already available for use in constructing den-
sity profiles. If, on the other hand, the o’s are as-
signed and held fixed, the final profiles could be con-
structed using either the initial preassigned a’s or, al-
ternatively, those deduced from the calculated mean
densities. If the initial a’s were used, we would only
reaffirm our expectation that the density profile of the
first zone was supposed to be a spike, the second was
transitional, and all others were uniform. For t~ls rea-
son, profile reconstruction is always based on the a’s
calculated from the converged mean densities using
equations (29) and (30). As noted earlier, the val-
ues of ~i obtained by applying these equations to the
right and left sides of a cell are averaged to obtain a
single representative value of the profile coefficient.

The peak densities pi at the zone centers may be
determined from the calculated mean densities and
profile coefficients by the following relationship that
is derived by analytically integrating the presumed
exponential density profile over a computational zone.

An analogous expression applies to Gaussian peaks.
d Finally, the density distributions within cells are con-

structed by direct substitution of pi and selected val-
ues of lx – ~i I into the exponential or Gaussian profiles

012345678

Normalized Position - x*

Figure 4. Comparison of density profiles for adsorp-
tion on a flat surface. LADFT reproduces first peaks
quite well, but suppresses weaker oscillations. Peak
spacing of DFT is slightly less than one diameter.

defined by equation (16), this time maintaining the
distinction between the ai’s that apply to the right
and left sides.

To demonstrate the reconstruction process, we
return to the previously discussed problem of nitro-
gen adsorption on a flat surface, focusing attention
now on the density distribution for a relative pres-
sure of p“ = P/Po = 0.95. In particular, we revisit
the calculation in which the profile coefficients were
assigned the fixed values of CYl= m, a2 = 4/0, and
CYi= Ofor i >2. The corresponding values of CY*= au
determined from the mean densities (after one itera-
tion) using equations (29) and (30) are 12, 4.5, 2.9,
and 0.5 for the first four layers. If we recalculate the
density field using these new CY’S,none of the weight
coefficients and none of the ~a changes by more than
3 percent, reinforcing our expectation that such iter-
ations are usually unnecessary.

The piecewise continuous density profile, shown
by a solid line in Figure 4 was constructed using the
profile coefficients (12, 4.5, 2.9, 0.5) calculated after
the first iteration of LADFT. This result is very sim-
ilar to the fine-zoned DFT result, shown by a dashed
curve. The first peaks reach maxima of 8.2 and 5.5 for
the DFT and LADFT results, respectively. This 30
percent reduction in magnitude of first peak is com-
parable to the error incurred in a conventional DFT
calculation run with a grid spacing of u/10 instead

1,1
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of the 0/20 spacing used to calculate the DFT result
shown in Figure 4. These peak densities are sensi-
tive not only to the grid spacing but also to details
of the somewhat arbitrary choices made in model-
ing the hard sphere repulsion, either in DFT or in
LADFT. Fortunately, the magnitude of the peak is
not of critical importance to engineering applications.
Overall, the character of the density profiles obtained
by LADFT and DFT is remarkably similar and the
amount of adsorbed fluid is nearly identical.

Exponential, rather than Gaussian functions,
were used in constructing Figure 4 because these re-
sults are in better agreement with the finely zoned
calculations. The corresponding Gaussian peaks are
broader but smaller in amplitude. Regarding profile
shapes, we also note that the second peak in Figure 4
has a nearly triangular shape and that this shape can
be used, rather than an exponential function with
CY*= 4/cr, as a transition between zones having sin-
gular and uniform profiles.

The density peaks predicted by fine-zoned DFT
are separated by slightly less than one molecular di-
ameter, as apparent in Figure 4. In contrast, the
LADFT peaks are, by assumption, coincident with
zone centers that are separated by exactly one diam-
eter. This unit spacing is appealing in its simplicity
and produces isotherms that conform well with the
more exact calculations. It would, of course, be possi-
ble to improve on this choice by simply using the ob-
served DFT spacing or by determining with LADFT
the spacing which minimizes the energy of an array of
identical spikes. This would be the appropriate grid
spacing for the highly oscillatory region, that being
the only place where the spacing matters. However,
since the spacing between layers actually depend on
three-dimensional packing considerations, it may not
be accurately predicted by one or two-dimensional
models, whether implemented by LADFT or by DFT.
Thus, it seems most appropriate to simply prescribe
a layer spacing near unity or, alternatively, to use
the basal plane spacing of a two or three-dimensional
packing.

Sample Calculations for Slit Pores
The preceding LADFT calculations were re-

stricted to adsorption on a flat external surface.
To demonstrate the application to adsorption within
pores, we now consider the adsorption of nitrogen at
the normal saturation temperature of 77 K in slit
pores of varying size. In each calculation the solid is
graphite, having the potential of equations (8) and (9)
with the parameters A, u,, p,, and e~ftaken as 3.35&
3.48 & 0.11 A-3, and 0.78x 10-14 ergs/molecule. The

I DFT ------

1.2 LADFT —

0.2

0.0
1

Relative Pressure - p*

Figure 5. Adsorption isotherms for slits of width
w*. LADFT solutions agree very well with fine-zoned ;
results, including occurrence and magnitude of con-
densation jumps in slits of width 2, 4, and 6.

--

mean diameter of the nitrogen molecule is IS= 3.57 &
and the Lennard-Jones ener~~ of approximately eff e
1.86 x 10-14 ergs/molecule is adjusted slightly, de-
pending on CL] in equations (14) and (15), to ensure
that the gas and liquid have equal energy when the
pressure and temperature are the saturation values of
101 kPa and 77 K, respectively. The procedure used
to adjust eff is explained in Appendix C.

The normalized variables appearing in subse-
quent plots and discussion are based on length di-
mensions that are scaled by the adsorbate molecular
diameter: x* =x/u, w*= w/u, 6*= 6/u, u~j = uij/u3,

a“ = cw, p* = pa3. Pressures are normalized by the
bulk saturation pressure p., to obtain the dimension-
less relative pressure p“ =p/p~.

Adsorption isotherms for narrow pores bounded
by planar walls are illustrated in Figure 5 for several
choices of the normalized pore width, w* = w/o. The
normalized pore mean density, ~“ = @3, is always gas-
like at very low pressures, becoming liquid-like with
increasing pressure. This transition occurs at lower
pressures in smaller pores due to the increased overlap
of attractive wall potentials. The isotherms of small >
pores (w* < 1.5) are continuous, whereas discontinu-
ous condensation jumps occur in large pores (w* ~ 4).
We further see that continuous solutions exist for pore ‘
sizes between 2 and 4, even though the solutions for
w“ = 2 and w’ = 4 are both discontinuous. This rich-
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ness of behavior has been explored previously by a
number of investigators [5,6,9,10,13,14]. Our present
purpose is simply to show that all of thk complexity
is captured by LADFT.

Adsorption isotherms like those in Figure 5 are
constructed by first calculating the gas-like family of

w
solutions starting from low pressure with initial den-
sities set to the bulk gas density. After solving equa-
tion (27) for pi, the pore mean density, ~(p), and free
energy, fl(p), are determined by integration over the
pore. The pressure is then incremented, and the en-
tire procedure is repeated using the last solution as
the initial guess. A total of 300 solutions are calcu-
lated at even increments of log(p) before reaching the
bulk condensation pressure, p“ = 1. The liquid-like so-
lutions are then computed in a similar fashion, start-
ing in this case from high pressure with all densities
initialized at the bulk liquid density. For continuous
isotherms both the liquid and gas families of solutions
are identical. When they differ, the appropriate solu-
tion is the one having a smaller free energy, as com-
puted using equation (2I). The condensation jump
then occurs at that pressure for which the two solu-
tions have equal energies. This construction sequence
is shared by DFT and LADFT; they differ only in

*
the methodology used and time required to calculate
density profiles for each pressure.

The agreement in Figure 5 between the LADFT
and finely resolved DFT calculations is very good,
particularly for pores having integer values of the nor-
malized pore width. The result for w“ = 1.5 displays
the largest disagreement that we have observed in
comparing more than 100 isotherms for normalized
pores sizes ranging from 0.8 to 40. Even this worst
case is within acceptable bounds, and the inaccuracy
associated with noninteger widths is no longer appar-
ent for w* z 2.5. The two sets of predictions are
also remarkably consistent regarding the presence and
magnitude of condensation jumps, in spite of the com-
plexities noted earlier. Another feature consistent be-
tween LADFT and conventional DFT is the crossing
of isotherms for small pore sizes; this is a consequence
of steric effects better illustrated by the next figure.

The pore mean density at a relative pressure of
unity is plotted in Figure 6 as a function of the nor-
malized pore width. The density peaks are associated
with pores that ideally accommodate an integer num-
ber of adsorbate layers. The peaks are not quite coin-

.
cident with integer pore widths because the minimum
of the wall potential is situated at x~~i~/u x 0.473,
rather than 0.5, and because the preferred spacing be-

* tween peaks is somewhat less that u. Pores smaller
than w“ x 0.7 are too small to admit even one gas
molecule, while very wide pores have a mean density

1.3

1.2
&

I
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— LADFT

t
,
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I ! I 1 I

0123456

Normalized Pore Width - w*

Figure 6. Variation of pore mean density of a sat-
urated liquid with pore width. Steric effects are pre-
dicted within a few percent by LADFT, indicating
that noninteger pore widths are not problematic.

approaching that of the unconfined saturated liquid,
~~(po) ~ 0.8.

The comparison in Figure 6 shows that LADFT
performs very well despite the introduction of zones
having irregular width at the pore center. The num-
ber of zones, N is determined by rounding w“ –
2Z~~i~+ 1 = W* to the next larger integer. When N is
odd, the middle zone is always centered at x“ = w“/2.
For all N >1, centers of the first zones are placed at
the minima of the wall potential; successive centers
are then positioned o apart until the next one would
cross the center plane. Thus, when the pore width
is slightly greater than 2z&in x 1, the center zone
is split in half. The resulting half zones grow with
increasing w“ until passing W* a 2 at which point a
third, very narrow, zone is introduced in the center.
It grows to unity, then splits in two, and the process
repeats. This gridding procedure avoids the inciden-
tal discontinuities that would otherwise accompany
changes in the number of zones.

Table 2 shows a comparison between CPU times
required to construct single 300-point adsorption
isotherms like those in Figure 5. All calculations were
performed on an SGI R8000 computer operating at
75 MHz. Initial values for each new pressure were
taken from the preceding solution. Iterations were
continued until the relative change in density on a
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w“ I DFT LADFT Ratio
I

2 665 0.91 730
4 1389 1.37 1013

8 3366 1.46 2305

16 10793 2.53 4266

32 37429 5.90 6343

Table 2. CPU time (seconds) required to construct
single adsorption isotherms by DFT and by LADFT.
The ratio of these two times, shown in the far right
column, increases with increasing pore width.

single cycle was less than 10–6 at every point. In the
interest of fairness, we used a relatively course grid
size of o/10 for the conventional DFT calculations.
This grid spacing provides only a three-point resolu-
tion of the first peak and shaves its amplitude by 30
percent, as noted earlier. Even so, the ratios of the
CPU times for DFT and LADFT ranged from 73o to
6343 for pores sizes ranging from 2 to 32 molecular
diameters. If we had used a grid spacing of 0/20 for
DFT, as needed to obtain the better resolved profiles
in Figure 2, these ratios would have increased by fac-
tors of 2 to 4 depending on the size of the domain.

These reductions in CPU time of 103 to 104 are
due in part to the 10-fold difference in the number,
Lf, of grid lines per molecular diameter. This should
account for a factor of 100 in the number of oper-
ations required per iteration since the summations
at iV1w* grid points each involve contributions from
M?-*~a~ neighbors, where r~aX is the normalized cut-
off range of the Lennard-Jones potential, taken as 3.5
in our calculations. The remaining factor of 10 to
100 comes from reducing the required number of it-
erations by localizing repulsive nonlinearities within
cells. These same considerations are expected to re-
duce CPU times by roughly 106 in two-dimensional
applications.

Summary
Density functional theory (DFT) is widely used

to determine fluid density distributions in microp-
orous materials. In the DFT methodology, minimiz-
ing the Helmholtz free energy functional leads to a
system of equations relating the local chemical poten-
tial to the van der Waak attractions and hard sphere

repulsions of surrounding material. TO solve these
equations by traditional numerical methods requires a
very substantial computing effort since the discretiza-
tion grid must be fine enough to resolve density peaks
much narrower than molecular dimensions.

In this present work, we avoid numerical resolu- -“
tion of sub-molecular scales by averaging the govern-
ing equations over zones of molecular size using ana-
lytical profiles to describe the spatial density variation
within each zone. We find that these local density
variations are well represented by exponential func-
tions, which may vary from uniform distributions to
singular density spikes as the exponential profile co-
efficient varies from small to large values. The profile
coefficients thus represent the reciprocal of the char-
acteristic width of the density profile within a given
cell.

Substituting these locally-analytic profiles into
the governing equations and integrating over each
computational cell yields a system of coupled equa-
tions for the mean cell densities and corresponding
profile coefficients. The profile coefficients, which play
a secondary role in these equations, may be deter-
mined iteratively a.s part of solving the fully coupled
system of equations, or alternatively may be preas-
signed and held fixed. Generally, convergence of the
profile coefficients is sufficiently fast that preassigned
values, if properly selected, provide very good results.

Adsorption isotherms and condensation pressures
calculated using this locally-analytic density func-
tional theory (LADFT) are in excellent agreement
with those predicted using the traditional implemen-
tation of DFT. Agreement between LADFT and tra-
ditional DFT predictions of the mean pore density
is generally within a few percent for pressures span-
ning ten orders of magnitude and for pore sizes rang-
ing from one molecular diameter up to the continuum
limit. This level of agreement is obtained using pres-
elected values of the profile coefficients corresponding
to a singular density spike adjacent to any pore wall,
one neighboring transition profile having a nearly tri-
angular shape, and a series of uniform density zones
still further removed from the pore wall.

The main benefit of the integral LADFT ap-
proach is to reduce computing times by a factor rang-
ing from If)3 to 104. Such dramatic improvements

should permit broader application of density func-
tional theory. For example, determining pore size
distributions from measured adsorption isotherms us-
ing traditional DFT normally requires several days to
compute the required family of single-pore isotherms
for wide range of pore sizes. These can now be com-
puted in about one minute. Two-dimensional calcu-
lations, which formerly entailed several hours of com-
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puting to produce one solution for a single pressure
and single pore size, can now be completed in a few
seconds.

One long-range goal of thk modeling effort is to
incorporate molecular-scale physics into engineering-

& scale analyses of adsorption and transport in an as-
semblage of interconnected pores of varying sizes. The
integral formulation of DFT presented here brings us
a step closer to that goal by eliminating the need for
numerical resolution of sub-molecular scales.

Nomenclature
a Helmholtz free energy per unit mass
d molecular diameter used to calculate repulsions
f Helmholtz free energy per unit volume
k Boltzman’s constant
f14 number of zones per molecular diameter

P pressure

T r position vector
2’ temperature
u Lennard-Jones pair potential
U fluid-fluid attraction
V external potential induced by solid walls
u volume of a computational cell
w pore width
x distance from solid surface
z distance from center plane of wall molecules
a exponential decay constant
Is thickness of adsorbed film
A basal plane spacing of wall molecules
A@ excess hard sphere repulsion
e well depth of Lennard-Jones potential

v volume fraction occupied by molecules
A de Broglie wave length

P chemical potential

P fluid density
c molecular diameter
w weight function defining smoothed density
n grand potential energy functional

Subscripts

. ff fluid- fiuid
Sf solid-fluid
ij indices of computational grid
e bulk liquid%
ma. cutoff range of Lennard-Jones potential
o condensation point of bulk fluid
vmin location where wall potential, V, is minimum

Superscripts
t derivative or integration variable
* normalized quantity (length scaled by a)

density weighted average over a grid zone
A

weighted average used to calculate rePulsion

Acknowledgment
This work was sponsored by the Engineered Ma-

terials and Processes Research Foundation at Sandia
National Laboratories.

References
1. D. M. Ruthven, Principles of Adsorption and

Adsorption Processes, Wiley-Interscience, NY, 1984.
2. S. J. Gregg and K. S. W. Sing, Adsorption,

Surface Area, and Porosity, Academic Press, London,
1983.

3. M. M. Dubinin, “Fundamentals of the Theory
of Adsorption in Micropores of Carbon Absorbents:
Characteristics of Adsorption Properties and Micro-
porous Structures”, Carbon, Vol. 27, No. 3, 457-467,
1989.

4. N. A. Seaton, J. P. R. B. Walton, and N.
Quirke, “A New Analysis Method for the Determi-
nation of the Pore Size Distribution of Porous Car-
bons from Nitrogen Adsorption Measurements”, Car-
bon, Vol. 27, No. 6, 853-861, 1989.

5. C. Lastoskie, K. E. Gubbins, and N. Quirke,
“Pore Size Distribution Analysis of Microporous Car-
bons: A Density Functional Theory Approach”, J.
Phys. Chem., Vol. 97, No. 18, 4786-4796, 1993.

6. J. P. Olivier, W. B. Conklin, and M. V.
Szombathely, “Determination of Pore Size Distribu-
tions from Density Functional Theory: A Compar-
ison of Nitrogen and Argon Results”, Characteriza-
tion of Porous Solids III, edited by J. Rouquerol, F.
Rodriguez-Reinoso, K. S. W. Sing, and K. K. Unger,
Studies in Surface Science and Catalysis, Vol. 87, 81-
89, Elsevier Science, 1994.

7. S. Brunauer, L. E. Copeland, and D. L,
Kantro, The Langmuir and BET Theories, The Solid-
Gas Interface, edited by E. A. Flood, Marcel Dekker
NY, 1967.

8. G. Horvath and K. Kawazoe, “Method for
the Calibration of Effective Pore Size Distribution
in Molecular Sieve Carbon”, J. Chem. Eng. Japan,
Vol. 16, No. 6, 470-475, 1983.

9. B. K. Peterson, K. E. Gubbins, G. S. Hef-
felfinger, U. Marini, B. Marconi, and F. van Swol,
“Lennard-Jones Fluids in Cylindrical Pores: Nonlocal
Theory and Computer Simulation”, J. Chem Phys.,
vol. 88, No. 10, 6487-6500, 1988.

15



10. J. P. R. B. Walton and N. Quirke, “Capil-
lary Condensation: A Molecular Simulation Study”,
Molecular Simulation, Vol. , 361-391, 1989.

11. D. E. Sullivan and M. M. Telo de Gama, Wet-
ting Transitions and Multilayer Adsorption at Fluid
Interfaces, Fluid Interracial Phenomena, edited by C.
A. Croxton, John Wiley, NY, 1986.

12. P. Tarazona, “Free-energy Functional for
Hard Spheres”, Phys. Rev. A, Vol. 31, No. 4, 2672-
2679, 1985.

13. C. Lastoskie, K. E. Gubbins, and N. Quirke,
“Pore Size Heterogeneity and the Carbon Slit Pore: A
Density Functional Theory Model”, Langmuir, Vol. 9,
2693-2702, 1993.

14. A. Papadopoulou, F. van SWO1,U. Marini,
and B. Marconi, “Pore-end Effects on Adsorption Hys-
teresis in Cylindrical and Slitlike Pores”, J. Chem.
Phys., vol. 97, No. 9, 6942-6952, 1992.

15. J. P. Olivier and W. B. Conklin, “Deter-
mination of Pore Size Distributions from Density
Functional Theoretic Models of Adsorption and Con-
densation within Porous Solids”, in DFT Software,
available from Microrneritics Instrument Corporation,
Norcross, GA, 30093, USA.

16. J. N. Israelachvivi, Intermolecular and Sur-
face Forces, Academic Press, San Diego, 1994.

17. W. A. Steele, The Interaction of Gases with
SoLidSurfaces, Pergamon Press, Glasgow, 1974.

18. C. Lastoskie, K. E. Gubbins, and N. Quirke
“Pore Size Distribution Analysis and Networking:
Studies of hlicroporous Sorbents”, Characterization
of Porous Solids III, edited by J. Rouquerol, F.
Rodriguez-Reinoso, K. S. W. Sing, and K. K. Unger,
Studies in Surface Science and Catalysis, Vol. 87, 51-
60, Elsevier Science, 1994.

19. S. Sokolowski and J. Fischer, “Liquid-Vapour
Density Profiles for Fluids in Pores from Density
Functional Theory”, J. Chem. Sot. Faraday Trans.,
Vo{. 89, No. 5, 789-794$1993.

Appendix A: Multidimensional Formulation
The purpose of this appendix is to briefly outline

the application of locally analytic DFT to two and
three-dimensional geometries. The region of interest
is first subdivided into zones with centers spaced one
molecular diameter apart in directions of density vari-
ation. As in any numerical analysis, there is no need
to subdivide the domain in directions of uniform den-
sity.

The gridding procedure for multidimensional ap-
plications is essentially the same as in one dimension.
The first layers of zones should still conform to ad-
sorptive solid boundaries. However, by now laterally

subdividing the first and subsequent layers into zones
of molecular size, allowance is made for density varia-
tions within layers. Irregular geometries pose no fun- .
damental obstacles, since it is only necessary to di-
vide the two or three dimensional space of interest
into zones centered roughly one molecular diameter -.
apart, placing odd sized zones in regions furthest from
boundaries.

The fluid density within a three-dimensional cell
centered at ri may generally vary with all three posi-
tion coordinates, as in the following extension of equa-
tion (16)

p(r) = ,oZf (r, rz) (Al)

where r = (z, y,.z), ri = (Zi, gi, Zi), and

f(r, rz) = e-ailz-z’in-d’ly -y’in-~’lz-z’ln (A2)

The three exponential decay constants appearing here
may then be calculated from cross-cell potential vari-
ations in the three orthogonal directions using equa-
tions analogous to (29) and (30). If there is no po-
tential gradient in one of these directions, the corre-
sponding coefficients will be zero and the solution will
revert to that for a lower dimensionality.

The mean cell density defined earlier by equa-
tion (17) is, in general, given by

~z=e
/

f(r, r,) dr
Vi vi

(A3)

and the weights wij of equation (19) are evaluated by
integration over the ~th cell.

/
w(ri) = ~ ~,f(r, rt) 41ri - d)dr (A4)

3

These repulsion weights are then averaged over the ith

cell to obtain

To calculate the corresponding attractive weight coef-
ficients, uij (rz) and iiij (ri), it is only necessary to re-
place u(lri –r/) and tiij (r) in equations (A4) and (A5)
with U(Jri – rl) and uij (r), respectively. Although
we have used catresian coordinates to describe three-
dimensional density variations within cells, the cell
centers need not be located at the intersections of a
rectangular grid. They could just as well be chosen to
conform with a three-dimensional packing of spheres
or, alternatively, the interstices of a porous adsorbent
or a zeolite.
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Because the governing equations involve integral
rather than differential operators, the numerical so-
lution scheme is nearly insensitive to the chosen grid
geometry. Indeed, the summations used todefinefl,
~, and ~ in equations (20) through (24) are applicable

* to all geometries in any number of dimensions. The
only differences arise in the required number of zones,
the directions over which the summations extend, and
the evaluation of weight coefficients.

Appendix B: Calculation of Integral Weights
The weight coefficients defined by equations (A4)

and (A5) can always be evaluated by direct numerical
integration over all three space dimensions. However,
it is usually more efficient to perform some or all of
these integrations analytically. Both alternatives are
explained below.

To evaluate the weight coefficients by direct nu-
merical integration, each of the molecular-scale calcu-
Iational cells must be subdivided into intervals small
enough to resolve variations in both the local den-
sity profile, j(r, ri), and the weight functions, u(r)
or u(r), themselves. Since these integrations are usu-

W ally performed only once, the required CPU time is
a small fraction of the total time spent in solving the
equations. Thus, there is no significant penalty in us-
ing 20 to 40 integration zones per molecular diameter.

In a two or three-dimensional problem the differen-
tial volume element, dr, is expanded as the product
of dx, dy, and dz; numerical integrations are then
performed over all three directions. It is, however,
possible to integrate analytically over any direction in
which the density is uniform, as illustrated below for
one-dimensional geometries.

When the density variation is one-dimensional, as
in the examples presented in the main text, numerical
integrations need only extend over that one dimen-
sion. For example, if the density varies with x alone,
equation (A4) may be written as

J

El++

/

co

Uij (xi)= ~
e–aj\Lz-zjl”

Pj Xj_i
u(r)27r~ d< dx (A6)

o

Here, r = Irl is the distance between a fixed reference
point (xi, yi, .zi) in the ith slab and a moving integra-
tion point (x, y, z) in the jth slab. That distance is
composed of a ~-component, & = IZ – ~i 1, parallel to.
the x axis and a <-component that lies in the perpen-
dicular (y, .z) plane.

T=Jm (A7)

( = /(?)–!/2)2+ (z – 22)2 (A8)

With these definitions, the integration over < can be
performed analytically for any given choice of the
weight functions U(T) and u(r). Using the particu-
lar functions defined by equations (4) and (7), respec-
tively,
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o (A9)
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u(r)2n< d< = –47rc72 – – :
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in which <* = ~/o. These results are then substituted
into equations (A6) and ultimately into (A5) before
integrating over the x, or equivalently ~, direction.
Those integrals depend upon the shapes of the density
profiles in the jth and ith zones, respectively, and must
usually be evaluated numerically for particular values
of ~j and OZ.

The ratio of the maximum to the mean cell den-
sity, pi/~i, appearing in equations (A4), (A5), and
(A6) can generally be determined by analytical inte-
gration of the presumed density profile over the ith

zone. The defining equation for this process is (A3),
and the result is given, for n = 1 and for any finite a,
by equation (32) of the main text.

In the degenerate case of a singular density pro-
file, the process of density weighted integration over
a cell is replaced by simply forming the product of
the cell mass, ~ivi, with the value of the integrand
that applies at the cell center. By this reasoning,
the weight coefficients, Wi,j and ui,j defined by equa-
tion (A6), can be obtained for singular cells by simply
evaluating the right hand sides of equations (A9) and
(A1O) for ~ = l~i – ~jl and multiplying the result by
Axj = l~j+~ – ~~+~ 1. The ~j appearing in the cell
mass cancels with the ~j in the denominator of equa-
tion (A6), such that the weights are independent of
~j. Although the weights are always independent of
pi and Pj, they do depend upon ~i and CYl.

Based on our experience with alternative formula-
tions of LADFT, we can recommend all three of ap-
proaches enumerated below, varying from the simplest
to the most general.

(1) To obtain good results for the least effort, use
singular density profiles (~i = co) in all zones, par-
ticularly if the problem is multidimensional. This ap-
proach is further detailed in Appendix C where sample
results are also included.
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(2) A good balance between simplicity and accu-
racy is afforded byusing thepreselected values of pro-
file coefficients that are applied in the sample calcu-
lations of the main text, al= cm, CY2= 4/0, and cq = O
for i ~ 3.

(3) To obtain maximum generality, the profile co-
efficients may be determined as a part of the solution.
After converging the mean cell densities for some ini-
tial choice of the a’s, equations (29) and (30) are used
to determine new values of the a’s. The weight coef-
ficients must then be recalculated for any zones that
experience significant changes in a. Although such
iterations could become quite time consuming, the
weight coefficients are relatively weak functions of the
profile coefficients, and the initial guesses suggested
in method (2) above are sufficiently accurate for all
of the problems we have solved. For these reasons,
the recalculation of o’s serves mainly as a consistency
check.

Appendix C: iMinimizing Programming Effort
Very good results can be achieved with a mini-

mal computer programming effort by simply assuming
that all of the mass within any cell is located at the

cell center. Under this approximation, identified with
profile coefficients that are all infinite, the entire den-
sity distribution is described by an array of singular
spikes (actually singular sheets in one dimension) sep-
arated from one another by one molecular diameter.

The advantage of this approach is that the weight
coefficients depend only on the distance between zone

centers, so the only integrations required are those
extending over directions in which the density is uni-
form. These integrals have already been evaluated in
equations (A9) and (A1O) for the geometry requir-
ing the greatest amount of prior analysis, that is, for
the one-dimensional case. Two-dimensional geome-
tries require analytic integration over one Cartesian
dimension; three-dimensional problems require none
at all.

Adsorption isotherms calculated by this method for
slit pores are shown in Figure Al. As in the analogous
Figure 5, results obtained by LADFT, this time with
all ai set to m, are compared with ‘~exact” isotherms
computed by conventional finely zoned DFT. It is
seen that the condensation jumps and high-pressure
portions of the isotherms are quite well predicted by
LADFT but that a relatively moderate error is com-

mitted in the low pressure region when the first lay-

ers are forming. These observations appear to con-

flict with earlier comparisons in Figure 3 of isotherms
for a flat external surface; there, the isotherm for
ai = a = m was correct at low pressure but deviated

‘.

at high pressure. The explanation for this apparent
inconsistency lies in the fact that all of the isotherms
in Figure 3 used the same value of the Lennard-Jones
energy, .sff, whereas Fig. Al was constructed using a
slightly different value of ~ff that produces bulk con-

densation (for this model with ai = a = cm) at the -.

correct pressure.
Recall that any DFT analysis, conventional or

locally-analytic, is begun by determining the Lennard-
Jones energy, cff, consistent with the model in
use. This is done using a nonlinear equation solver,
FZERO in our work, to iteratively adjust the value of
eff so that the energy of the bulk liquid and the bulk
gas are identical at the known bulk condensation pres-
sure, p., corresponding to the isotherm temperature,
To this end, a nested root-finding operation is per-
formed, with the outer loop adjusting the value of Eff
and the inner loops adjusting the values of the bulk
liquid and bulk vapor densities, pl and pg, to find
the two roots of equation (14) for a candidate eff.
For those two densities, the corresponding energies,
fll and flg are calculated from a simplified version of
equation (1), analogous to equation (14), that applies
to a bulk fluid in the absence of an external potential.
Although two density roots and the corresponding en-

ergies can be found for a broad range of cff, there is
only one value of eff for which these energies are iden-
tical.

The Lennard-Jones energy eff, so determined, de-
pends upon the modeling assumptions through the
numerical value of Cu appearing in equations (14),
(15), and (A14). C,J is the density weighted integral
of the Lennard-Jones pair potential, u, over an infi-
nite domain containing, for ~i = m, an infinite array
of density spikes or sheets. This configuration is not
identical to the customary case of a bulk fluid having a
spatially uniform density corresponding to a, = O. It
is noted that in the general case of variable o. the prop-
erties of the bulk fluid should be based upon cq = O,
because that is the physical state preferred by that
model in the absence of, or remote from, solid bound-
aries.

The numerical values of C’~J= C’u/a3 for ~i =
O and ai = m are approximately -11.09 and -12.25,
as obtained by horizontal summation of the entries
in Table 1, taking into account that all but the first
entry, for iiii, must be counted twice because those
layers are present on both sides of any central slab of ‘+
fluid. It follows, further, that a larger magnitude of
CM results in a smaller value of Eff, since the product
~ffcLJ must be nearly the same for all configurations >
having the same bulk condensation pressure.

This 10 percent reduction in the Lennard-Jones
enerb~ of the singular-spike model reduces the self
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Figure Al. Adsorption isotherms predicted by
LADFT are in good agreement with “exact” DFT
results even when the density profiles are presumed
singular in all zones. Although agreement is slightly
degraded from that shown earlier in Figure 5, required
computer coding is simplified.

attraction of the first layer and, hence, reduces the
amount of adsorption occurring at low pressure. How-
ever, with increasing pressure the growth of a thick-
ening layer and the occurrence of pore condensation
depend on the collective attraction of multiple fluid
layers. This bulk attraction must necessarily be quite
similar for all models that use the preceding method-
ology to determine ~ff. Overall, the mathematical
accuracy of even the simplest singular-spike version
of LADFT should be more than adequate for most
purposes.
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